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Location-dependent variograms are calculated for improved estimation.  The weighting of the sample pairs 
in variogram calculation is inversely proportional to their distances to pre-defined points within the study 
area.  The local experimental variograms or correlograms are modeled to yield locally varying 
parameters.  These non stationary variograms are used in non stationary estimation. 

Introduction 

Conventional application of geostatistics assumes that the variogram depends only of the separation 
between sample pairs.  The delimitation of geologically homogeneous domains and removal of large scale 
trends facilitates this decision of stationarity.  Often, we cannot divide the domain into as many 
subdivisions as we would like; there are too few data for reliable inference.  Choosing a single location 
invariant variogram model may not be suitable, particularly when the continuity varies smoothly. 

A reasonable approach is to calculate and model variograms within sub-regions of the domain.  Choosing a 
window of data for variogram calculation often leads to instability because of limited data.  The approach 
may introduce unwarranted discontinuities.  As an alternative, we propose to use all data, but weight the 
data pairs in variogram calculation.  Close data pairs will receive more weight.  The exponent of the inverse 
distance function controls the weights function.  The exponent value chosen must be high enough to allow 
the stable identification of local spatial features; a balance between smoothness and local precision must be 
found.  These weighted variograms are calculated for different locations within the domain.  These so-
called “anchor points” could be on a regular grid distributed over the study area. 

Although each location-dependent variogram could be fit by hand, the variogram fitting is performed 
automatically in this paper.  The resultant set of values of the variogram model parameters, such as nugget 
effect, ranges and anisotropy orientations can be fitted by polynomial functions in order to provide a 
continuous model for the parameters at every point of the domain. 

The theory for locally weighted variograms, their implementation in the experimental variogram 
calculation, the modelling of local variograms and the fitting of polynomial functions for describing the 
variation of variogram parameters all over the domain are developed and presented in this work using 
synthetic and real data examples. 

Distance Weighted Measures of Spatial Continuity 

Two alternatives were considered for weighting the pairs involved in the experimental variogram 
calculation.  The first approach consists in calculating the weights inversely proportional to the distance 
between the anchor point and the middle point of the segment formed by the head and tail samples of a pair 
separated by a lag distance (see Figure 1a).  The weight assigned to each pair: 
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Were ,m oα
is the distance between the midpoint of the segment formed by the sample pair, α , and an 

anchor point, o. c is a positive offset value included to smooth the results and avoid dividing by zero, and p 
is an exponent to control the relative change in weight as distance increases. 
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The second approach for variogram pairs weighting is to use the weights of the head and tail sample points: 
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This approach is similar to using the average of the distances from the pair’s endpoints to the anchor point. 

Using either weighting scheme, the locally weighted variogram is calculated as: 
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It is clear that if the power p is zero, this expression becomes the traditional semivariogram measure, where 
all sample pairs have the same importance in the calculation regardless of their position.  Under the form 
above, the sum of weights is constrainted to one, thus the locally weighted experimental variogram and the 
other measures presented below are valid (Chiles and Delfiner, 1999). 

(a)      (b)  

Figure 1: (a) Pair distance to the anchor point relative to the lag midpoint and (b) Pair distance to the 
anchor point relative to the lag endpoint. 

Similarly, the variance of distance weighted pairs can be calculated as:  
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This variance is used for calculating the standardized weighted semivariogram.  Since the weights depend 
of the distance between the midpoint of the segment formed by a sample pair and the anchor point, a single 
weight cannot be assigned to individual samples, but n different weights are associated to each sample, they 
correspond to the n pairs that can be formed by a given sample and the other samples included itself.  Thus 
the distance weighted mean becomes: 
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Then, the non stationary locally weighted covariance is expressed as: 
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With: 
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Similarly, the distance weighted correlogram can be calculated as: 
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Other distance weighted measures of spatial continuity including relative variograms, variograms of 
transformed data and cross variograms are straightforward to derive. 

Programs Implementation 

The calculation of experimental distance weighted variograms was implemented in a modified version of 
the FORTRAN program GAMV2004, called GAMV-Local.  The anchor points can be on a 2 or 3-D grid 
or with locations specified in a separate anchor point file.  This new program calculates the measures of 
spatial variability with the weighting of the sample pairs according to the distance weighting schemes 
described above.  The parameter file of this program is presented in Figure 2. 

 
Figure 2: Parameters for GAMV-Local 

The output file of GAMV-Local is similar to that of GAMV2004, with the exception that the header of the 
first variogram of a set of variograms calculated for a single anchor point contains the coordinates of this 
point (see Figure 3). 

 
Figure 3: Format of the GAMV-Local output file 

Since the number of anchor points used for the calculation of locally weighted experimental variograms can 
be considerable, the manual fitting of them is not always practical and thus, we rely mostly on automatic 
fitting.  For such purpose, the program VARFIT was modified in order to recursively read the experimental 
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variograms from the GAMV-Local and fit the models corresponding to each location.  VARFIT-loc 
writes the parameters of the fitted variogram models, as well as the coordinates of their corresponding 
anchor points, in a summary file of GSLIB format that can be used for plotting the variation of the 
variogram model parameters across the domain and for fitting deterministic polynomial functions.  The 
only modifications in the parameter file for VARFIT-loc are the inclusion of a line for the number of 
anchor points to be considered, and a line to specify the name of the summary file. 

Synthetic Data Example 1 

The synthetic image for the first example consists of two zones was created using Sequential Gaussian 
Simulation; the distribution of simulated values is Gaussian with the same mean (0) and variance (1) for 
both zones.  The parameters of the variogram used for generating the two regions are also similar: nugget 
effect equal 0.1, and a spherical variogram model with major and minor ranges equal to 20m and 5, 
respectively.  The only difference between the zones is the orientation of the major anisotropy axes, 0° in 
the west, and 90° in the east (see Figure 5).  A transition zone was created between both regions by 
simulating the second region with data from the first. 

The anchor points are located on a 10mx10m grid arrangement, the program GAMV-Local was used to 
calculate the experimental variograms in the Az. 0° and Az. 90° directions for each anchor point and for 
different values of the exponent p of the inverse distance weights.  Then, VARFIT-loc was used for 
fitting the variograms for the 220 anchor points.  The variogram model was locked to a spherical model. 

Figures 6, 8 and 9 present the nugget effect and the major and minor horizontal range parameter for the 
fitted spherical variogram models.  The nugget effect decreases slightly as the power progress from 0 to 1 
approaching the true variogram nugget effect.  The nugget effect becomes increasingly variable from one 
anchor point location to another as the power exceeds 2 (see Figure 6). 

In the same way, the major and minor ranges of the fitted variogram models approach the true variogram 
ranges for each domain as the power factor grows from 0 to 1, but the range values become increasingly 
noisy as the power factor is increased beyond a value of 2 (Figure 7). 

In order to assess the most suitable values for the power and the offset parameter a measure of optimality 
was designed.  This measure compares the local experimental or modeled variogram to the reference 
variogram: 
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Where apn is the number of anchor points and local true (h)γ  and distance weighted (h)γ can be either the 
experimental variograms or fitted models.  Figure 8 shows the optimality measure for experimental 
variograms at different power values but a fixed offset value of 0.1.  As the power is increased from 0 to 1, 
the distance weighted variograms approach the local true variograms minimising the lag optimality 
measure when this factor is 1.  The variograms become increasingly noisy for higher values of the power. 

The fitted models (Figure 9) also indicate that a power factor of around 1 is optimal.  At lag distances 
greater than the variogram range the lag optimality measure decreases if the fitted experimental variograms 
were standardized.  For the shortest lags, the distance weighted variograms with a power factor of 2 can be 
slightly more accurate than those calculated using a factor of 1 (Figures 8 and 9).  The global measure of 
optimality (Figure 10) shows a clear improvement for the experimental variograms when a power of 1 is 
used in the pairs weighting function. 

Synthetic Data Example 2 

Three zones were created using sequential Gaussian simulation with neighbour data from the adjacent zone, 
and subsequently back transforming the simulated result to three different lognormal distributions.  The 
central zone has a high mean (2.02) and variance (3.42) with N-S preferential continuity, while the West 
and East zones have lower means and variances, thus, the West zone has a mean of 0.98, a variance of 1.96 
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and an Azimuth of 135° as direction of major continuity, and the East zone has a mean of 0.55 and a 
variance of 0.92 with a E-W direction of major continuity (see figure 11).  The nugget was different for 
each of the three zones: 30%, 40% and 15% for the West, Central and East zones, respectively. 

The area covers 800 x 800 pixels and was sampled in a quasi random grid of 10x10 pixels, and the anchor 
points were arranged in a regular 50x50 pixels grid.  Both weighting approaches were tested with this data 
set using two different configurations of the power and offset parameter for inverse distance weighting. 

Figure 12 show the local means and variances calculated using inverse distance weighting with a power of 
1 and an offset of 1 pixel and using three different weighting schemas: (1) distance of the individual 
samples to the anchor points, (2) distances from the pair’s midpoints to the anchor points (see expression 
1), and (3) combined distances of the pair’s endpoints to the anchor points (see Expression 2).  Calculations 
were also performed with a power of 2 and an offset of 5 pixels; the results were similar in character, but 
somewhat noisier.  When the correlogram pairs are weighted in relation to their midpoint, the influence of 
the central high grade zone is extended excessively in the East and West low grade areas.  Moreover, this 
weighting schema introduces other artifacts in the variance maps. 

When the pairs are weighted by the sum of the endpoints distance to the anchor point, the local mean and 
variance are more consistent with the mean and variance obtained weighting by the inverse distance of 
individual samples and with spatial distribution of local data (see Figure 11, bottom).  These results 
indicate that the endpoints distance weighing scheme is more appropriate.  Local correlograms were also 
calculated.  The results with a power of 1 appear smooth and reasonable.  The directions of continuity are 
fit well.  The results are similar to the local variogram results. 

Real Data Example 

The clustered sampling of Walker Lake (Isaaks and Srivastava, 1989) and a quasi regular 10m x 10m grid 
sampled from the exhaustive Walker data are considered.  The variables in the data sets present different 
domains and changing orientations of anisotropy as can be seen in Figures 13 a and b.  The results obtained 
using a power of 2 and an offset of 5m are presented because they appear better than the results obtained 
with a power of 1.  The results with a power of 1 appear too smooth. 

Figure 14 shows, for the clustered data set, the local mean and variance calculated by weighting 
individually the samples and by weighting the sample pairs.  The pair endpoints weighting produces better 
mean and variance maps than the individual sample weighting.  The high concentration of samples in the 
high valued area influences the surrounding regions. A proportional effect is observed for both datasets. 

The experimental local weighted variograms of both datasets were fitted using a single spherical structure, 
Figures 15 shows the fitted variogram model parameters of the clustered data.  The spatial distribution of 
the local variogram and correlogram parameters are similar.  The correlogram and variogram parameters of 
the models for the quasi regular grid data show a sharper spatial structure than those of the clustered data 
and a better definition of the local data features, particularly in the major values continuity orientation 
(Figures 16). 

Discussion 

A distance weighting exponent between 0.5 and 2 works well, a lower value produces smooth local 
experimental variograms with results approaching the traditional variogram.  A higher exponent increases 
local precision of the local variograms at the cost of increased noise.  Weighting the variograms by the 
endpoint distances to the anchor points leads to the best results.  Correlograms account for the local head 
and tail means and variances at different lag distances; thus, they appear more robust and easier to interpret 
in this locally stationary framework.  A single structure leads to stable results.  If two structures are used, 
the parameters of the long range structure appear quite variable.  Although the variogram shape could 
change from one region to another, there could be unwarranted variation in the model type if fit 
automatically.  The parameters of the models fitted to the local weighted experimental variograms at each 
anchor point could be interpolated to provide the location-dependent parameters required at every location 
for non stationary or quasi stationary estimation.  These parameter maps should show geologically 
reasonable variations. 
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Conclusions  

Locally varying variograms are able of provide a more accurate description of the spatial behaviour of a 
non-stationary variable than that provided by the traditional measures of spatial variability.  Weighting the 
pairs by inverse distance with a power between 1 and 2 appears to work well.  Correlograms are preferred 
over variograms since they are insensitive to local means and variances.  Local variations in the nugget 
effect and variogram parameters could have a significant affect on spatial prediction.  Further research is 
required for understanding the behaviour and interpretation of the non stationary measures of spatial 
continuity, as well as for testing other pairs weighting schemas.  The use of the non stationary variogram 
parameters in estimation will be analysed, tested and discussed in another CCG paper. 
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Figure 4. Synthetic example 1: Two zones with different major anisotropy axis orientation. 

 
Figure 5. Synthetic example 1: Change in the local nugget effect relative to the increasing power of the 
weighting function. 
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Figure 6: Synthetic example 1: Change in the N-S range relative to the increasing power of the weighting 
function. 
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Figure 7: Absolute differences between local true and distance weighted experimental variograms at 
different lag distances. 
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Figure 8: Absolute differences between the models of the local true and the distance weighted variograms 
at different lag distances. 
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Figure 9: Global absolute differences between true and weighted local variogram. 
 

 
Figure 10: synthetic image and 10x 10 pixels sample grid used in the second example. 
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Figure 11: Local mean and variances calculated using inverse distance weighting of individual samples 
(top), of pair’s midpoints (centre) and of pair’s endpoints (bottom). A power of 1 was used for the inverse 
distance weighting function.  
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 (a) (b) 

Figure 12: Clustered (a) and 10m x 10m  samples grid (b) from the walker data set. 

 

 
Figure 13: Local means and variances calculated for the clustered data set by weighting the distance to 
individual samples (top) and by weighting by the distances to  the pair’s endpoints.  



 117-11 

 
Figure 14: Local parameters for the model fitted to the non stationary variograms calculated from the 
clustered data set. 
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Figure 16: Local parameters for the model fitted to the non stationary variograms calculated from the 10m 
x 10m sample grid. 


